202 research outputs found

    Persistence of rye (Secale cereale L.) chromosome arm 1RS in wheat (Triticum aestivum L.) breeding programs of the Great Plains of North America

    Get PDF
    Rye (Secale cereale L.) chromosome arm 1RS has been used world-wide by wheat (Triticum aestivum L.) breeding programs as a source of pestand pathogen-resistance genes, and to improve grain yield and stress tolerance. The most common vehicles used to access 1RS are various 1AL.1RS and 1BL.1RS wheat-rye chromosomal translocations. Over the past 25 years, advanced North American wheat breeding lines were evaluated, first by assay of secalin storage proteins, and later by use of DNA marker TSM0120, for the presence of these two translocations. Both methods provide accurate and efficient means of identifying and differentiating 1BL.1RS and 1A.1RS. Both 1Al.1RS and 1BL.1RS wheats were found in all tested years. 1AL.1RS lines were more common in southern Great Plains breeding programs. 1AL.1RS lines were released as cultivars at a frequency identical to that of wild-type breeding lines. In contrast, 1BL.1RS breeding lines were developed by breeding programs throughout the Great Plains, but fewer were released as cultivars. Both 1RS translocation types persist in Great Plains breeding programs. The lower rate of release of 1BL.1RS cultivars no doubt is a consequence of the more drastic effects on breadmaking quality relative to those observed with 1AL.1RS

    Pm223899, a new recessive powdery mildew resistance gene identified in Afghanistan landrace PI 223899

    Get PDF
    Key message A new recessive powdery mildew resistance gene, Pm223899, was identified in Afghanistan wheat landrace PI 223899 and mapped to an interval of about 831 Kb in the terminal region of the short arm of chromosome 1A. Abstract Wheat powdery mildew, a globally important disease caused by the biotrophic fungus Blumeria graminis f.sp. tritici (Bgt), has occurred with increased frequency and severity in recent years, and some widely deployed resistance genes have lost effectiveness. PI 223899 is an Afghanistan landrace exhibiting high resistance to Bgt isolates collected from the Great Plains. An F2 population and F2: 3 lines derived from a cross between PI 223899 and OK1059060-126135-3 were evaluated for response to Bgt isolate OKS(14)-B-3-1, and the bulked segregant analysis (BSA) approach was used to map the powdery mildew resistance gene. Genetic analysis indicated that a recessive gene, designated Pm223899, conferred powdery mildew resistance in PI 223899. Linkage analysis placed Pm223899 to an interval of about 831 Kb in the terminal region of chromosome 1AS, spanning 4,504,697–5,336,062 bp of the Chinese Spring reference sequence. Eight genes were predicted in this genomic region, including TraesCS1AG008300 encoding a putative disease resistance protein RGA4. Pm223899 was flanked proximally by a SSR marker STARS333 (1.4 cM) and distally by the Pm3 locus (0.3 cM). One F2 recombinant was identified between Pm3 and Pm223899 using a Pm3b-specific marker, indicating that Pm223899 is most likely a new gene, rather than an allele of the Pm3 locus. Pm223389 confers a high level of resistance to Bgt isolates collected from Pennsylvania, Oklahoma, Nebraska, and Montana. Therefore, Pm223389 can be used to enhance powdery mildew resistance in these states. Pm3b-1 and STARS333 have the potential to tag Pm223389 in wheat breeding

    A High-Density SNP and SSR Consensus Map Reveals Segregation Distortion Regions in Wheat

    Get PDF
    Citation: Li, C. L., Bai, G. H., Chao, S. M., & Wang, Z. H. (2015). A High-Density SNP and SSR Consensus Map Reveals Segregation Distortion Regions in Wheat. Biomed Research International, 10. doi:10.1155/2015/830618Segregation distortion is a widespread phenomenon in plant and animal genomes and significantly affects linkage map construction and identification of quantitative trait loci (QTLs). To study segregation distortion in wheat, a high-density consensus map was constructed using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers by merging two genetic maps developed from two recombinant-inbred line (RIL) populations, Ning7840 x Clark and Heyne x Lakin. Chromosome regions with obvious segregation distortion were identified in the map. A total of 3541 SNPs and 145 SSRs were mapped, and the map covered 3258.7 cM in genetic distance with an average interval of 0.88 cM. The number of markers that showed distorted segregation was 490 (18.5%) in the Ning7840 x Clark population and 225 (10.4%) in the Heyne x Lakin population. Most of the distorted markers (630) were mapped in the consensus map, which accounted for 17.1% of mapped markers. The majority of the distorted markers clustered in the segregation distortion regions (SDRs) on chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 5A, 5B, 5D, 6B, 7A, and 7D. All of the markers in a given SDR skewed toward one of the parents, suggesting that gametophytic competition during zygote formation was most likely one of the causes for segregation distortion in the populations

    Multiple Minor QTLs Are Responsible for Fusarium Head Blight Resistance in Chinese Wheat Landrace Haiyanzhong

    Get PDF
    Citation: Cai, Jin, Shan Wang, Tao Li, Guorong Zhang, and Guihua Bai. “Multiple Minor QTLs Are Responsible for Fusarium Head Blight Resistance in Chinese Wheat Landrace Haiyanzhong.” Edited by Maoteng Li. PLOS ONE 11, no. 9 (September 27, 2016): e0163292. https://doi.org/10.1371/journal.pone.0163292.Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is a devastating disease in wheat (Triticum aestivum L.). Use of host resistance is one of the most effective strategies to minimize the disease damage. Haiyanzhong (HYZ) is a Chinese wheat landrace that shows a high level of resistance to FHB spread within a spike (type II resistance). To map the quantitative trait loci (QTLs) in HYZ and identify markers tightly linked to the QTLs for FHB resistance, a population of 172 recombinant inbred lines (RILs) from a cross between HYZ and Wheaton (FHB susceptible) was genotyped using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs) derived from genotyping-bysequencing (GBS), and evaluated for percentage of symptomatic spikelets (PSSs) per spike in three greenhouse experiments. Six QTLs for type II resistance were identified in HYZ, indicating that multiple minor QTLs together can provide a high level of FHB resistance in wheat. The QTL with the largest effect on FHB resistance was mapped on the chromosome arm 5AS, and the other five from HYZ were mapped on the chromosomes 6B, 7D, 3B, 4B and 4D. In addition, two QTLs from Wheaton were mapped on 2B. Critical SNPs linked to the QTLs on chromosomes 5A, 6B, and 2B were converted into KBioscience competitive allele-specific PCR (KASP) assays, which can be used for marker-assisted selection (MAS) to pyramid these QTLs in whea

    Association analysis of stem rust resistance in U.S. winter wheat

    Get PDF
    Citation: Zhang D, Bowden RL, Yu J, Carver BF, Bai G (2014) Association Analysis of Stem Rust Resistance in U.S. Winter Wheat. PLoS ONE 9(7): e103747. https://doi.org/10.1371/journal.pone.0103747Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RS[superscript Amigo] (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK

    Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW)

    Get PDF
    Key message Hard red wheats can donate genes to hard white wheats for tolerance to preharvest sprouting, the effects are quantitative in nature, and may be tracked with previously described DNA markers. Abstract Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) can negatively impact end-use quality and seed viability at planting. Due to preferences for white over red wheat in international markets, white wheat with PHS tolerance has become increasingly desired for worldwide wheat production. In general, however, red wheat is more tolerant of sprouting than white wheat. The main objective of this study was the identification of PHS tolerance conditioned by genes donated from hard red winter wheat, using markers applicable to the Great Plains hard white wheat gene pool. Three red wheat by white wheat populations, Niobrara/NW99L7068, NE98466/NW99L7068 and Jagalene/ NW99L7068 were developed, and white-seeded progenies were analyzed for PHS tolerance and used to identify markers for the trait. In the three populations, marker loci with significant allelic effects were most commonly located on chromosomes of group 2, 3, 4 and 5, though additional markers were detected across the wheat genome. Chromosome 3A was the only chromosome with significant markers in all three populations. Markers were inconsistent across the three populations, and markers linked to tolerance-inducing loci were identified in both tolerant and susceptible parents. Additive effects of marker loci were common. In the present investigation, a wide range of PHS tolerance was observed, even though all lines were fixed for the recently reported positive TaPHS1 allele. PHS tolerance is controlled by additive major gene effects with minor gene effects where variations of minor gene effects were still unclear

    Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat

    Get PDF
    Citation: Li, C. L., Bai, G. H., Chao, S. M., Carver, B., & Wang, Z. H. (2016). Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. Crop Journal, 4(1), 1-11. doi:10.1016/j.cj.2015.10.002Wheat (Triticum aestivum L.) grain quality traits that are controlled by quantitative traits loci (QTL) define suitable growing areas and potential end-use products of a wheat cultivar. To dissect QTL for these traits including protein content (GPC); test weight (TW); single kernel characterization system (SKCS)-estimated kernel weight (SKW); kernel diameter (KD); kernel hardness measured by near-infrared reflectance spectroscopy (NIRS) hardness index (NHI); and SKCS-hardness index (SHI), a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers was developed using recombinant inbred lines (RILs) derived from Ning7840 x Clark. The RILs were evaluated for these quality traits in seven Oklahoma environments from 2001 to 2003. A total of 41 QTL with additive effects on different traits were mapped on most wheat chromosomes, excluding 1A, 2A, 3D, 4D, 6D, and 7B. Seven chromosome regions showed either tightly linked QTL or QTL with pleiotropic effects on two to four traits. Ten pairs of QTL showed additive x additive effects (AA), four QTL were involved in additive x environment (AE) effects, and one was involved in AAE effects. Two to eleven QTL for each of the six traits and 139 tightly linked markers to these QTL were identified. The findings shed light on the inheritance of wheat grain quality traits and provide DNA markers for manipulating these important traits to improve quality of new wheat cultivars. Production and hosting by Elsevier B.V. on behalf of Crop Science Society of China and Institute of Crop Science, CAAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Genome-wide association analysis on pre-harvest sprouting resistance and grain color in US winter wheat

    Get PDF
    Citation: Lin, M., Zhang, D. D., Liu, S. B., Zhang, G. R., Yu, J. M., Fritz, A. K., & Bai, G. H. (2016). Genome-wide association analysis on pre-harvest sprouting resistance and grain color in US winter wheat. Bmc Genomics, 17, 16. doi:10.1186/s12864-016-3148-6Background: Pre-harvest sprouting (PHS) in wheat can cause substantial reduction in grain yield and end-use quality. Grain color (GC) together with other components affect PHS resistance. Several quantitative trait loci (QTL) have been reported for PHS resistance, and two of them on chromosome 3AS (TaPHS1) and 4A have been cloned. Methods: To determine genetic architecture of PHS and GC and genetic relationships of the two traits, a genome-wide association study (GWAS) was conducted by evaluating a panel of 185 U.S. elite breeding lines and cultivars for sprouting rates of wheat spikes and GC in both greenhouse and field experiments. The panel was genotyped using the wheat 9K and 90K single nucleotide polymorphism (SNP) arrays. Results: Four QTL for GC on four chromosomes and 12 QTL for PHS resistance on 10 chromosomes were identified in at least two experiments. QTL for PHS resistance showed varied effects under different environments, and those on chromosomes 3AS, 3AL, 3B, 4AL and 7A were the more frequently identified QTL. The common QTL for GC and PHS resistance were identified on the long arms of the chromosome 3A and 3D. Conclusions: Wheat grain color is regulated by the three known genes on group 3 chromosomes and additional genes from other chromosomes. These grain color genes showed significant effects on PHS resistance in some environments. However, several other QTL that did not affect grain color also played a significant role on PHS resistance. Therefore, it is possible to breed PHS-resistant white wheat by pyramiding these non-color related QTL

    Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat (<it>Triticum aestivum </it>L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome.</p> <p>Results</p> <p>Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data.</p> <p>Conclusion</p> <p>The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat.</p
    • …
    corecore